>

仿生超疏水微米构造制备商量,化学所切磋人士

- 编辑:ca88手机会员 -

仿生超疏水微米构造制备商量,化学所切磋人士

图片 1

化学所有机固体院重点实验室江雷研究员的课题组利用一种简单的模板覆盖法制备了超疏水性阵列聚苯乙烯 纳米管膜。研究表明,水滴在这种膜表面具有很大的粘附力,即使翻转或倒置表面水滴也不会滚落。他们的这项研究结果是受到壁虎脚底大量纳米结构刚毛产生高粘附力的启发而得到的。研究人员还首次利用高敏感性的微电力学天平测量水滴与膜之间的粘附力。

仿生超疏水纳米结构制备研究 纳米多孔结构控制超疏水表面粘滞力从高到低变化的示意图:a,毛细力产生示意图,当水与管口分离时,三相界面上液面的弯曲将会产生毛细力,力的方向始终指向弯曲液面的凹面;b,纳米孔阵列表面高粘滞示意图;c, 纳米管阵列表面可控粘滞示意图;d, 超疏水类火山石三维纳米多孔结构及其极低粘滞力的示意图。在国家自然科学基金和中科院专项基金支持下,中国科学院苏州纳米所纳米仿生研究部高雪峰博士课题组通过与厦门大学、化学所等单位紧密合作,在超疏水纳米结构的设计、制备及表面粘附力调控方面取得新进展,相关研究结果近期发表在《先进材料》(Advanced Materials, 2009, 21, 37993803) 上。近年来,随着纳米技术的发展,科研人员利用疏水材料构筑微纳米结构或在微纳结构表面修饰低表面能化学物质可以赋予材料表面超疏水性能。尽管微纳结构可以极大地增强表面与水滴的接触角,但未必能消除水的粘滞。一方面,某些粘滞力可控的超疏水表面在特定领域发挥作用,可作为机械手用于微液滴的无损输运;另一方面,非粘性超疏水表面显示出各种优异的性能,可用于材料表面的自清洁和减阻。很显然,纳米结构的制备及表面粘附调控问题已成为超疏水材料研究领域的热点课题。基于表面粗糙度增强表面疏水性和毛细力产生粘附力的原理,他们设计并制备了三种超疏水二氧化钛纳米多孔结构:纳米孔阵列、纳米管阵列和类火山石纳米结构。研究表明:超疏水多孔纳米结构的表面粘附力受以下因素的控制:1)纳米结构的几何表观形貌,它们通过固液接触方式来实现微尺度下范得瓦尔斯吸引力的调控;2)毛细孔与开放孔的比例,凡是能被液-气界面密闭的孔洞被称之为毛细孔,调控毛细孔的大小和密度可以实现微尺度下毛细力的调节;调控毛细孔长度可实现液固分离前密闭的气相体积及负压大小的调控。对于超疏水纳米孔阵列、纳米管阵列和类火山石纳米结构模型而言,它们与水的黏附力从高到低可变,在不改变化学组成的前提下,仅通过纳米结构形貌就可以实现表面黏附力的调控,水滴在表面从牢牢黏附到瞬间滚动可控。研究成果有助于深入理解超疏水表面黏附机理以及设计面向应用的新型超疏水纳米材料。 )更多阅读《先进材料》发表论文摘要

2000年,英国《自然》杂志(Nature 2000, 405, 681) 的报道揭示,壁虎的每只脚底部长着大约50万根极细的刚毛,刚毛末端又有约400根至1000根更细小的纳米分支。这种精细结构使得刚毛与物体表面分子间的距离非常近,从而产生范德华力。虽然每根刚毛产生的力量微不足道,但累积起来就很可观。

江雷研究员的课题组制备得到的这种具有高粘附力的阵列PS纳米管膜在结构与性能上都类似于壁虎的脚底,它可以在微量水滴从超疏水表面到普通亲水表面的传输上起到“机械手”的作用。相关研究结果发表在近期《先进材料》(Adv. Mater. 2005, 17, 1977)上,该结果在网上发表后立即引起了人们的广泛关注,并且被Nature杂志以News & Views的形式进行了报道 (Nature 2005, 436, 471)。

图片 2

具有高粘附力PS纳米管膜的表面及侧面形貌图

图片 3

水滴在翻转或倒置的PS纳米管膜表面也不会滚落

图片 4

PS纳米管膜在微量水滴的运输中起到“机械手”的作用

有机固体院重点实验室

2005年8月11日

本文由ca88官网发布,转载请注明来源:仿生超疏水微米构造制备商量,化学所切磋人士